direct product, non-abelian, supersoluble, monomial
Aliases: C2×C6.S32, C62.7D6, C3⋊Dic3⋊5D6, He3⋊3(C22×C4), C6.16(S3×Dic3), C32⋊(C22×Dic3), C32⋊C12⋊6C22, He3⋊3C4⋊5C22, (C2×He3).11C23, C22.9(C32⋊D6), (C22×He3).7C22, C6.85(C2×S32), (C3×C6)⋊1(C4×S3), (C2×C6).53S32, C3⋊S3⋊(C2×Dic3), (C3×C6)⋊(C2×Dic3), C32⋊2(S3×C2×C4), (C2×C3⋊S3).9D6, C3.2(C2×S3×Dic3), C32⋊C6⋊2(C2×C4), (C2×C32⋊C6)⋊3C4, (C2×He3)⋊2(C2×C4), (C2×C3⋊Dic3)⋊3S3, (C2×C3⋊S3)⋊2Dic3, C2.2(C2×C32⋊D6), (C2×C32⋊C12)⋊7C2, (C2×He3⋊3C4)⋊6C2, (C22×C3⋊S3).2S3, (C3×C6).11(C22×S3), (C22×C32⋊C6).3C2, (C2×C32⋊C6).9C22, SmallGroup(432,317)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C2×C6.S32 |
Generators and relations for C2×C6.S32
G = < a,b,c,d,e | a2=b3=c3=d6=e4=1, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, dbd-1=b-1c-1, dcd-1=ece-1=c-1, ede-1=d-1 >
Subgroups: 1019 in 205 conjugacy classes, 61 normal (21 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C22×C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, He3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C62, C62, S3×C2×C4, C22×Dic3, C32⋊C6, C2×He3, C2×He3, S3×Dic3, C6.D6, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C22×C3⋊S3, C32⋊C12, He3⋊3C4, C2×C32⋊C6, C22×He3, C2×S3×Dic3, C2×C6.D6, C6.S32, C2×C32⋊C12, C2×He3⋊3C4, C22×C32⋊C6, C2×C6.S32
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C4×S3, C2×Dic3, C22×S3, S32, S3×C2×C4, C22×Dic3, S3×Dic3, C2×S32, C32⋊D6, C2×S3×Dic3, C6.S32, C2×C32⋊D6, C2×C6.S32
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 66)(8 61)(9 62)(10 63)(11 64)(12 65)(13 59)(14 60)(15 55)(16 56)(17 57)(18 58)(19 40)(20 41)(21 42)(22 37)(23 38)(24 39)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 26 22)(2 27 23)(4 19 29)(5 20 30)(8 71 14)(9 72 15)(11 17 68)(12 18 69)(31 41 48)(33 44 37)(34 45 38)(36 40 47)(50 64 57)(51 65 58)(53 60 61)(54 55 62)
(1 26 22)(2 23 27)(3 28 24)(4 19 29)(5 30 20)(6 21 25)(7 13 70)(8 71 14)(9 15 72)(10 67 16)(11 17 68)(12 69 18)(31 48 41)(32 42 43)(33 44 37)(34 38 45)(35 46 39)(36 40 47)(49 56 63)(50 64 57)(51 58 65)(52 66 59)(53 60 61)(54 62 55)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 8 4 11)(2 7 5 10)(3 12 6 9)(13 20 67 27)(14 19 68 26)(15 24 69 25)(16 23 70 30)(17 22 71 29)(18 21 72 28)(31 63 34 66)(32 62 35 65)(33 61 36 64)(37 53 47 57)(38 52 48 56)(39 51 43 55)(40 50 44 60)(41 49 45 59)(42 54 46 58)
G:=sub<Sym(72)| (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,66)(8,61)(9,62)(10,63)(11,64)(12,65)(13,59)(14,60)(15,55)(16,56)(17,57)(18,58)(19,40)(20,41)(21,42)(22,37)(23,38)(24,39)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,26,22)(2,27,23)(4,19,29)(5,20,30)(8,71,14)(9,72,15)(11,17,68)(12,18,69)(31,41,48)(33,44,37)(34,45,38)(36,40,47)(50,64,57)(51,65,58)(53,60,61)(54,55,62), (1,26,22)(2,23,27)(3,28,24)(4,19,29)(5,30,20)(6,21,25)(7,13,70)(8,71,14)(9,15,72)(10,67,16)(11,17,68)(12,69,18)(31,48,41)(32,42,43)(33,44,37)(34,38,45)(35,46,39)(36,40,47)(49,56,63)(50,64,57)(51,58,65)(52,66,59)(53,60,61)(54,62,55), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,67,27)(14,19,68,26)(15,24,69,25)(16,23,70,30)(17,22,71,29)(18,21,72,28)(31,63,34,66)(32,62,35,65)(33,61,36,64)(37,53,47,57)(38,52,48,56)(39,51,43,55)(40,50,44,60)(41,49,45,59)(42,54,46,58)>;
G:=Group( (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,66)(8,61)(9,62)(10,63)(11,64)(12,65)(13,59)(14,60)(15,55)(16,56)(17,57)(18,58)(19,40)(20,41)(21,42)(22,37)(23,38)(24,39)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,26,22)(2,27,23)(4,19,29)(5,20,30)(8,71,14)(9,72,15)(11,17,68)(12,18,69)(31,41,48)(33,44,37)(34,45,38)(36,40,47)(50,64,57)(51,65,58)(53,60,61)(54,55,62), (1,26,22)(2,23,27)(3,28,24)(4,19,29)(5,30,20)(6,21,25)(7,13,70)(8,71,14)(9,15,72)(10,67,16)(11,17,68)(12,69,18)(31,48,41)(32,42,43)(33,44,37)(34,38,45)(35,46,39)(36,40,47)(49,56,63)(50,64,57)(51,58,65)(52,66,59)(53,60,61)(54,62,55), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,67,27)(14,19,68,26)(15,24,69,25)(16,23,70,30)(17,22,71,29)(18,21,72,28)(31,63,34,66)(32,62,35,65)(33,61,36,64)(37,53,47,57)(38,52,48,56)(39,51,43,55)(40,50,44,60)(41,49,45,59)(42,54,46,58) );
G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,66),(8,61),(9,62),(10,63),(11,64),(12,65),(13,59),(14,60),(15,55),(16,56),(17,57),(18,58),(19,40),(20,41),(21,42),(22,37),(23,38),(24,39),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,26,22),(2,27,23),(4,19,29),(5,20,30),(8,71,14),(9,72,15),(11,17,68),(12,18,69),(31,41,48),(33,44,37),(34,45,38),(36,40,47),(50,64,57),(51,65,58),(53,60,61),(54,55,62)], [(1,26,22),(2,23,27),(3,28,24),(4,19,29),(5,30,20),(6,21,25),(7,13,70),(8,71,14),(9,15,72),(10,67,16),(11,17,68),(12,69,18),(31,48,41),(32,42,43),(33,44,37),(34,38,45),(35,46,39),(36,40,47),(49,56,63),(50,64,57),(51,58,65),(52,66,59),(53,60,61),(54,62,55)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,8,4,11),(2,7,5,10),(3,12,6,9),(13,20,67,27),(14,19,68,26),(15,24,69,25),(16,23,70,30),(17,22,71,29),(18,21,72,28),(31,63,34,66),(32,62,35,65),(33,61,36,64),(37,53,47,57),(38,52,48,56),(39,51,43,55),(40,50,44,60),(41,49,45,59),(42,54,46,58)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 4A | ··· | 4H | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 6P | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 2 | 6 | 6 | 12 | 9 | ··· | 9 | 2 | 2 | 2 | 6 | ··· | 6 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | ··· | 18 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D6 | Dic3 | D6 | D6 | C4×S3 | S32 | S3×Dic3 | C2×S32 | C32⋊D6 | C6.S32 | C2×C32⋊D6 |
kernel | C2×C6.S32 | C6.S32 | C2×C32⋊C12 | C2×He3⋊3C4 | C22×C32⋊C6 | C2×C32⋊C6 | C2×C3⋊Dic3 | C22×C3⋊S3 | C3⋊Dic3 | C2×C3⋊S3 | C2×C3⋊S3 | C62 | C3×C6 | C2×C6 | C6 | C6 | C22 | C2 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 1 | 2 | 1 | 2 | 4 | 2 |
Matrix representation of C2×C6.S32 ►in GL10(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 0 | 0 |
G:=sub<GL(10,GF(13))| [12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12],[0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,12,1,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,12,0,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,8,5,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,8,5,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,8,5,0,0,0,0,0,0,0,0,0,5,0,0] >;
C2×C6.S32 in GAP, Magma, Sage, TeX
C_2\times C_6.S_3^2
% in TeX
G:=Group("C2xC6.S3^2");
// GroupNames label
G:=SmallGroup(432,317);
// by ID
G=gap.SmallGroup(432,317);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^6=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations